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The effects of a sound wave on the compressible
boundary layer on a flat plate

By C. R. ILLINGWORTH
Department of Mathematics, University of Manchester
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SUMMARY

The boundary layer on a hot flat plate which is fixed at zero
incidence in a slow stream carrying a progressive sound wave is
investigated. Formulae are obtained for the skin friction and the
heat transfer in the extreme cases when the frequency is very low
and very high. In addition, different methods of simplifying the
boundary layer equations in unsteady compressible flow are
briefly compared.

1. INTRODUCTION

During the last few years there has been a revival of interest in the theory
of unsteady laminar boundary-layer flows. The solution for the initial
growth of the boundary layer on a body started from rest has long been
known, but the recent work has been concerned with the later stages of
such a motion and with the boundary layers associated with fluctuating
external flows. One of the first contributions to these new developments
was made by Moore (1951), who considered the compressible boundary
layer on a heat-insulated flat plate moving with variable velocity in a uniform
medium. Moore’s work has since been supplemented by that of Ostrach
(1955) who treats the same problem for an isothermal flat plate. Both
these papers are relevant to the boundary layer on a missile whose velocity
changes continually during flight.

Another important contribution, dealing with unsteady incompressible
boundary layers, has been made by Lighthill (1954). He investigates the
boundary layer in plane flow over a fixed cylinder of arbitrary cross-section
when the free stream is fluctuating with small amplitude about a steady
mean value. For incompressible flow, this problem is mathematically the
same as if the cylinder were moving with the same fluctuating velocity in
a uniform medium at rest. For this reason, Moore’s and Ostrach’s results
when interpreted for incompressible fluctuating flow link up with Lighthill’s
predictions concerning a flat plate.

Lighthill mentioned the Rijke tube among the possible fields of
application of the theory of fluctuating boundary layers, and it was, in
fact, the phenomenon of the Rijke tube that suggested the work described
in this paper. Rayleigh (1894) describes how such a tube may be set up.
He quotes the case of a tube 5 ft. long and 4% in. in diameter, open at both
ends and held vertically. When a fine wire gauze stretching across the tube
about 1 ft. from the bottom was made red hot by a flame, and then the
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flame was suddenly removed, almost immediately a sound of considerable
power was emitted which lasted for several seconds. In the tube there is a
stream of air composed of two components, namely the fairly slow convection
current up the tube combined with the longitudinal motion associated with
standing sound waves. The energy of the sound waves is derived from the
varying transfer of heat from the gauze to the surrounding air, and this
changes with the fluctuations in the speed of the air current past the gauze.
In the Rijke tube, therefore, we have an example of a hot obstacle in a
fluctuating air stream. Itis true that the Reynolds number for the flow past
the fine wires of the gauze described by Rayleigh is below the range of
Reynolds numbers for which boundary-layer theory is valid, and therefore
the theory which follows really applies to an obstacle of larger longitudinal
dimensions than the gauze.

The principal aim of the present paper is to investigate the effect of
high wall temperature on the skin friction and heat transfer on a flat plate
fixed in a stream carrying sound waves. In addition, we shall take some
account of the effects of the fluctuations in density and temperature that
accompany the sound waves in the external stream. (In Lighthill’s theory,
for incompressible flow, the obstacle may be warm, but not hot, and the
density and temperature are constant in the external flow.) Qur investigation
is closely related to, but not equivalent to, Moore’s work on a moving plate.
For if, in Moore’s problem, we change from axes fixed in the medium to
axes fixed in the plate, so as to give the appearance of a plate at rest in a
moving medium, we thereby introduce an apparent pressure gradient
—p dU/dt in the boundary layer, where p is the density and U(?) is the
velocity of the plate. On the other hand, the pressure gradient for a fixed
plate in a stream U(t) which fluctuates slightly and has a uniform mean
density p,, is —p,dU/dt. 'The two pressure gradients are different unless
p = po Thus it is only for incompressible fluids that Moore’s and
Ostrach’s results provide the answers to our present problem.

2. EQUATIONS OF MOTION

We shall consider the boundary layer on a cylindrical obstacle fixed
in an unsteady stream. An example of such a stream occurs when sound
waves are propagated downstream in steady flow past the obstacle, and this
particular flow when the obstacle is a flat plate will be investigated in some
detail in §3. The flow is supposed to be perpendicular to the axis of the
fixed cylinder, and so only two space coordinates are involved, x measured
along the surface of the cylinder from the leading edge, and y measured
perpendicular to the surface. The boundary-layer equations then are
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where u and o are the velocity components in the x and y directions,
p, I and p are the density, specific enthalpy and viscosity respectively,
and P is the Prandt! number, supposed to be constant. The suffix 1 refers
to the external stream at the edge of the boundary layer and the external
velocity u,, density p,, pressure p, and enthalpy 7, which are all functions
of ¢ and x in general, obey the equations

dpy + d(py 1) -0

ot ox ’ (4)
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The last equation expresses the fact that the entropy of each fluid elemen
in the external stream is conserved, but in the example considered in §3
we shall use the even stronger condition that the external stream is
homentropic. To these equations must be added the equation of state

y—1
=" o], 7
p="r (7)
valid for a gas with constant specific heats, and the equation
pl = p, I, (8)

which, in conjunction with (7), expresses the fact that the pressure p does
not change across the boundary layer at any station.

It is convenient now to follow Moore’s method of analysis. This is an
extension of the Howarth (1948) transformation to unsteady boundary
layers. First, the y-coordinate is replaced by Y, where

Y(t, %,y) = p‘l,j f : o(t, %, ) ds )

in which the suffix oo refers to some standard state of the fluid. Later we
shall identify this state with the mean state of the free stream. Next, Moore
introduces a function ¢ satisfying
_ PO O
=Sy (10)
which closely corresponds to the stream function in steady plane flow.
(For example, mass flux is measured by p,i.) Then, the equation of
continuity (1) is satisfied if
o P (W Y
v=—3 (8x+ = ) (11)
and, with t, x, Y as the independent variables, (2) and (3) are immediately
transformed into
d o o ofd\d 10p, 1 1 0 %
(5 + 575~ %aw)sv =~ mar * mav(wars) 02
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These equations may be simplified further by making the special
assumption that the viscosity varies as the temperature 7 across each station
in the boundary layer. According to this,

b= Py T/Tw> (14)
where the viscosity at the wall u,, may be related to the wall temperature T,
by Sutherland’s law

Fw T\t T+ T,

= () 09
where T is a characteristic temperature of the fluid, 114°K for air. The
formula (14) which was discussed by Chapman & Rubesin (1949), is a
good approximation to the true viscosity-temperature relation (Sutherland’s
law) near the wall, all along the boundary layer. Of course it is less accurate
in the outer part of the boundary layer, where it would be better to use
# = py T/T;, but errors in the viscosity and conductivity there are mitigated
by the smallness of the velocity and temperature derivatives. Equations (14)
and (15) together imply that

p= CugI/l,, (16)

where o To+T,
C= X XToo+Ts, (17)
in which x = T',/T,. It now follows, with the help of (7) and (8), that
ke = p*pu, (18)
where . _ Cﬁ—l#w- (19)

When pp is replaced by p*p,,, according to (18), the boundary layer equations
take the simplified form

(3 3 2 a¢a>a¢ Lape I P2 3%
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These are simultaneous differential equations for the mass-flux function
and the enthalpy I, which are the two quantities we have to determine.

3. FLAT PLATE FIXED IN A LOW SPEED FLUCTUATING STREAM
We have already mentioned the flow in the Rijke tube. In order to

gain some information about the behaviour of the boundary layer on the
obstacle in this kind (_)f flow, we shall examine the boundary layer ‘on a hot
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flat plate which is fixed at zero incidence in a low speed stream containing
a progressive sound wave. We choose a flat plate as the obstacle rather
than a circular cylinder, which would be more representative of the wires
in the gauze, because the external flow past it is simpler. A flat plate at
zero incidence does not, in a first approximation to the boundary-layer
problem, affect the incident stream. With a circular cylinder, unless we
restricted attention to wavelengths of sound much greater than the radius
of the cylinder, we should have to include the effects of the scattering of
the sound wave in the velocity external to the boundary layer. (Of course,
in the Rijke tube, the sound waves are in fact much longer than the
dimensions of the obstacle.) With a flat plate there is no scattering
whatever the frequency of the sound waves.

If the stream past the plate has a mean velocity U,, and if there is a
sound wave of frequency w moving downstream in it, the resultant velocity
may be written, in complex form, as

uy(t, %) = le:l +e exp(iwt - _Zwlwﬁ is):,, (22)

ini which € € 1. Here; M is the Mach number of the mean flow and s is
the frequency parameter wx/U,. The corresponding pressure and
temperature are given by ‘

. M .
Pty %) = pwl:l-f-yMeexp(zwt— Tl zs):l, (23)

T(t, %) = TwI:1+(y~—1)Meexp(iwt— %is)]. (24)

These expressions are valid for all values of M and w; the only approximation
that they involve is that €2 and higher powers of € should be negligible.
We shall confine attention to the case when M is small, partly because
this is appropriate to the low speed stream in the Rijke tube and partly
because the solution of the boundary layer equations, especially for the
temperature, is thereby shortened. In the extreme case M = (), which
applies to an incompressible external stream, the speed of sound then being

infinite, (22) becomes
uy(t, x) = Uy(1 + ee™), (25)

and the corresponding pressure, density, and temperature, are constants
with the values p, p., and T, respectively. Thus, by setting M = 0, the
progressive nature of the sound wave is obliterated, and the problem is
reduced to that of the compressible boundary layer on a flat plate in an
incompressible stream whose velocity is fluctuating in magnitude. This
problem for a fluid that is incompressible in the boundary layer as well as
in the external stream has been discussed by Lighthill (1954) for a cylindrical
obstacle of arbitrary cross-section, and by Gibellato (1955) for a flat plate.
By taking M = 0 in the following theory we shall be able to show how large
temperature differences modify their results,
2H2
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The simplification to the boundary-layer solution that is possible
when M is small is brought about by neglecting the dissipation in the
energy equation (21). This is a crucial step that sets a limit to the magnitude
of M. For the discarded dissipation is O(M?), while the terms retained
are O(x—1), where x = T,/T,, and we shall assume that y is O(1). For
a red-hot wire, y would be in the region of 2. We are therefore committed
to neglecting any term whose weight is O(M?) compared with those
retained.

It follows that the external stream may be expressed as

wy(t, x) = U,(1+E), (26)
it %) = po(1 +yME), (27)
Ty(t, %) = Tufl+(y—1)ME], (28)

where E = eexp (fwt—Mis). This stream, like the one from which it has
been derived, is homentropic, and so p,dl; = dp,. Consequently, with
dissipation neglected, the energy equation (21) takes the simpler form
9 9 o INI Cv,p, 0% (I 29
(7 + e - mov)r = F o aw(z) @)
In solving equations (20) and (29) it will be convenient to separate the
cases of low and high frequency. The frequency parameter s is equal
to kx/M, where k is the wave number. In the Rijke tube the quantity kx,
being of the order of the ratio of the diameter of the wire to the length
of the tube, is small, but since we are considering M to be also small it
is quite possible for s to be large. More precisely, we shall examine the
cases of small and large values of s in turn.

Case of low frequency
When s is small, the external stream is given by
uy(t, x) = Uy[1+ (1 — Mis)ee™?), (30)
Pi(t, %) = po[l +yMee™), (31)
Ty(t, x) = To[1+(y—1)Mee™), (32)

when terms involving M? are neglected. Care is required in evaluating
terms like (—1/p;)dp;/0x in equation (20). This is equal to

ou, du,y

-é_t— + Uy 'é-‘; =
according to (26), and does not vanish as (31) would suggest. The
appropriate form of the function ¢ in the solution for small s is

b= (CU v, 5] Flo)+ee 3 (7,0) | (3)
where 7 = [Uw/(va x)]¥2Y. It follows that
ﬁ, —u=U [F () + et éﬂ (is)nfn’(n)], (34)

%é [(1— M)is — M(is)?]ee™™
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and
- % = HCU, v,/x)V? x

ax 2
<[ nFe-Fayre 3 @rasio - @i | 65

where the dashes denote differentiation with respect to . The temperature
may be written in the form

T|Ty = x—(x—1)G) + e X (is)"gu(n)- (36)

The boundary conditions require that e

F(0) = F'(0) =0, F'(w0)=1;

G(0) =0, G(w) =1;

fo(0) = £5(0) = 0, fo(®) =1;

£(0) = £1(0) = 0, fi(e) = —M; > (37)

fa(0) = £,(0) =0, f(®)y=0 (n>2);

8(0) = —(r—1)My,  go(e0) =0;

£:(0) =0, gu(©) =0 (n=1). ]

When the expressions (34), (35) and (36) are substituted into (20) we
obtain, from the term independent of ¢, Blasius’s equation
F"+1FF =0. (38)
The Blasius function F is tabulated for instance by Schlichting (1955),
and the numerical values required in the present problem were taken
from that source. Considering next the terms involving e (€% is of course
neglected), we obtain from the terms independent of s
fo +3Ffg +§Ffo = —yMF" = byMFF’, (39)
and, from the terms with the factor s,
D, f = fi—(1-M)[x—(x—1)GI, (40)
where D, denotes the operator
_‘{3_ +1F£ _F’i +3F
ap ¥ T A
Similarly, equation (29) yields the equations
%)G"—}-%FG’ =0, (41)

1 ” ’ ’ M " 4
B8 +4F8 = (=) 1670+ U5 6 |= 1= DG Uo=vMP), (42)

and D, g = $(x -G ri+80 (43)
where D, denotes the operator

1 4 7 d F’

P "1? +3 HT) -1,

The required solution of (41) is
n ]
6= [trora/[ were ()
0 0
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and this function is tabulated in table 1 for P = 0-72, which has been taken
as a representative value of the Prandtl number for air. Now, equations (39)
and (42) would still survive if w were zero, when the external velocity
would be U,(1+¢€). In fact, fy and g, represent the perturbations in the
steady flow solution when the parameters U, and v, that occur in the
steady solution are changed to Uy(l+¢) and v,(1+yMe) respectively.
This last expression arises from the fact that the factor Cv,p;/p. in (20)
and (29), which is Cv,, when the flow is steady, takes the value Cv(1 +yMe)
in the quasi-steady case (w = 0). Thus

d
(Vv Py = s g +vMvo g [(CU. w02,

whence

fo = UF+0F)+ yM(F=F) (45)
Similarly,
g0 =~ DMX(1~G)| U spm +9Mve s |x—(x= 1G]
= — (= DML~ G) = Y~ )1~y My, (46)

in which the first term arises because g, and y —{x - 1)G have to satisfy
different boundary conditions.
The solution of (40) may be written as

1,

flz_f11+Xf12_M[%y< F20)>+4(1 IF+i—tymF -

~dyfat (e~ 1+ 1)+ (1 :%y)fm], (47)

where fi;, fi» and f}; are the solutions of

D, fu=G—(inF" + F'), (48)
D1f12= G—‘l, (49)
D1f13= Flz“ly (50)

subject to the boundary conditions f,,(0)=f,,(0)=fi.(0)=0 for
n=1,2,3. These three differential equations are solved by first finding the
solution of the homogeneous differential equation

D, f10 =0,
subject to fi4(0) = fm(O) =0, f{(0) = 1. Then, to find Ju for example,

the particular integral fa1» Of (48) that satisfies f,,(0) = £1,(0) f{'l(O
is next determined, and the required function is given by

_ fu(oo)
fll _fll f (oo)fm (51)

The functions f,, (n =0, 1, 2, 3) are tabulated in table 1.
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Finally, the solution of (43) may be written as
&1 = (x— D(g11— xg12) + Mx(y — Dgas + (x — D{EF(1 —dy)nG" — dygu +
+(x =1+ 1)ge+ 31— dy)era— 80/ F'(0))gis}],  (52)

where g11, g0, £13) £12 and gy are the solutions of

Dy gy = —3@3fu+n)G, (53)
D; g1y = — /1 G (54)
Dy g13=G-1, (55)
Dy g1a= —f1s G, (56)
D, gys = - FG, (57)

subject to the boundary conditions g,,(0) = g,,(0) = 0forn =1, 2, 3, 4, 5.
The solutions of these are found, as for the corresponding f equations, by
first determining the solution of

Dy g10=0 (58)

subject to g,9(0) = 0, g/o(0) = 1, and then combining it in turn with the
particular integrals of (53)~(57) for which g,,(0) = g1,(0) = 0. The functions
g1, (n=20,1, ..., 5) so determined are tabulated in table 2.

The skin friction is

N Pwpw  Us \12 (3u _ 2 f Cveo \2 P2
Tuy(t) -x) ad P (Cl'®x> (55 ge0 = P Uoo wa> E)o X
X[Ff'(0)+eefwf S Gy ;(0)], (59)
n=0

and if (r,), denotes the skin friction for steady flow, viz.

o CVoc 12
(Tw)s = 0332/);0 U‘odo <T.Ox> »

it follows that
T |4 ee[1-5+(3-661x— 1-105)is +
(Tw)s
+ M{0-7—(3-661x +1-228)is}], (60)
for v = 14, provided that s is small enough for s? and higher powers to be
negligible.
Similarly, the heat transfer from the plate to the air is

_ Pwpw [ Us \V2 (3T
qw(t:x) - Po,, <Cvmx> <$) =0

1 CUx v, \¥2 py , ot &
~ o “2E) 2 1 -6 O - $ (5.0 ] 61
and if (g,,), is the heat transfer in steady flow, viz. |

1 CU, v, \U2
(g = 0296 3 po 22 )" (1o~ L),
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n G G’ fm f{o ’1’0 fu f{l
0 0 0-2956 0 0 1 0 0
0-2 0-0591 0-2956 0-020 0-200 1-000 0007 0-073
0-4 0-1182 0-2953 0-080 0-400 1-000 0-029 0-145
06 0-1772 0-2944 0-180 0-600 1-:000 0-065 0-213
0-8 0-2359 0-2927 0-320 0-800 1-000 0-114 0-276
1-0 0-2942 0-2898 0-500 1-000 1-001 0-175 0-334
1-2 0-3518 0-2857 0-720 1-200 1-002  0-247 0-383
1-4 0-4084 0-2800 0-980 1-401 1-006 0:328 0-424
1-6 0-4636 0-2726 1-281 1-603 1-013 0-416 0-454
1-8 0-5173 0-2635 1-622 1-807 1-025 0-509 0-474
2-0 0-5689 0-2525 2-003 2-013 1-045 0-605 0-483
2:2 0-6182 0-2398 2-427 2:225 1077  0-701 0-481
24 0-6648 0-2256 2-894 2-445 1-123 0-796 0-468
2:6 0-7083 0-2100 3-406 2676 1-188 0-888 0-447
2-8 0-7487 0-1933 3-966 2:922 1-274 0-974 0-418
30 0-7856 0-1758 4.576 3-187 1-385 1-055 0-383
32 0-8190 0-1580 5-242 3-478 1-523 1-127 0-344
34 0-8488 0-1403 5-969 3-798 1-688 1-192 0-302
3-6 0-8751 0-1229 6-764 4-155 1-881 1248 0-261
3-8 0-8980 0-1062 7-634 4-552 2-098 1-296 0-220
40 09177 0-0906 8-588 4-995 2-338 1-337 0-182
4-2 0-9343 0-0762 9-635 5-489 2-597 1:370 0-148
4-4 0-9482 0-0632 10-787 6-035 2-870 1-396 0-118
4:6 0-9597 0-0517 12-053 6-637 3-154 1-417 0-092
4-8 0-9690 0-0417 13-445 7-297 3-443 1-433 0-070
5:0 0-9765 0-0332 14-976 8-015 3-735 1-445 0-052
5-2 0-9824 0-0260 16655 8-791 4-026 1-454 0-038
5:4 0-9870 0-0201 18-496 9-625 4-314 1:461 0-028
5-6 0-9905 0-0153 20-509 10-516 4-597 1:465 0-019
5-8 0-9932 0-0115 22-706 11-463 4-875 1-469 0-013
0-9952 0-0085 25-098 12-466 5-147 1-471 0-009
0-9966 0-:0062 27:696 13-522 5-414 1-472 0-006
0-9977 0-0045 30-510 14-631 5-676 1-473 0-004

0-9984 00032 33552 15-792 5934 1-474 0-002
0-9990 0-0022  36-830 17-004 6-189 1474  0-002

[= 3= 0 = N N}
oA NO

0-9993 0-0015  40-357 18-267 6440 1:475 0-001
0-9996 0-0010  44-140 19-580 6690 1:475  0-000
0-9997 0-0007  48-192 20-943 6-938 1475  0-000
0-9998 0-:0004 52521 22-355 7-185 1475  0-000
0-9999 0-0003 57-137 23-817 7-431 1-475  0-000

R
OB O

1-0000 0-0002  62-051 25-327 7-676  1:475  0-000

oo
<

Table 1.



76
7-8

8:0

Effects of a sound wave on a compressible boundary layer

11
0-3671
0:363
0-351
0-331
0-303

0:268
0-226
0-178
0-126
0:072

0-017
—0-036
—0-085
—0-127
—0-162

—0-187
—0-203
—0-209
—0-207
—0-197

—0-182
—0-162
—0-141
—0-119
—0-098

—0-079
—0-062
—0-047
—0-035
—0-026

—0-018
—0-013
—0-009
—0-006
—0-004

—0-002
—0-002
—0-001
—0-001
—0-000

—0-000

fli
0
0-023
0-087
0-185
0-309

0:454
0-613
0-782
0:955
1-128

1-297
1-459
1-611
1-751
1-878

1-992
2:090
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2:462

2:475
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2-503
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2-504
2-504
2-504
2-504

2:504
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0
0-224
0-410
0-560
0-678

0-765
0-824
0-858
0-868
0-858

0-830
0-787
0-733
0:670
0-601

0:530
0-459
0:390
0:326
0-267

0-214
0-169
0-131
0-100
0-074

0-054
0-039
0-028
0-019
0-013

0-008
0-006
0:003
0-:002
0-001

0-001
0-000
0-000
0-000
0-000

0-000

1a
1-2159
1-022
0-840
0-669
0-510

0-364
0-229
0-107
—0-002
—0-097

—0-179
—0-245
—0-296
—0-331
—0-352

—0-358
—0-352
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—0:309
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0
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0:334
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0-000

0-000
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—0-318
—0-389
—0-438
—0-466

—0-474
—0-464
—0-440
—0-404
-0-361

—0-314
—0-266
—0-220
—0-177
—0-139

—0-107
—0-080
—0-059
—0-042
—0-030

—0-020
—0:014
—0-009
—0-006
—0-004

—0-002
—0-001
—0-001
—0-000
—0-000

—0-000
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£10
0
0-200
0-400
0-602
0-806

1-015
1-231
1-457
1-697
1-955

2-234
2-541
2-880
3-255
3-672

4:136
4-652
5-223
5:855
6:550

7-312
8-143
9:045
10-019
11-066

12-187
13-383
14-653
15-996
17-414

18-905
20-469
22-106
23-816
25-598

27-452
29-378
31-377
33-447
35-589

37-802
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£10
1
1-000
1-004
1-013
1-031

1-060
1-103
1-162
1-241
1-340

1-462
1-609
1-780
1-977
2-199

2-445
2714
3-005
3-314
3-640

3-980
4-330
4-689
5-053
5-422

5-792
6:163
6:534
6-903
7-272

7-638
8-003
8-367
8-730
9-091

9:452
9-812
10-171
10-530
10-889

11-247

£11

0
0-054
0-106
0-157
0-206

0-250
0-290
0-326
0-354
0-376

0-391
0-399
0-400
0-393
0-380

0-362
0-339
0-312
0-283
0-252

0-222
0-192
0-163
0-137
0-113

0-092
0-073
0-058
0-045
0-034

0-026
0-019
0-014
0-010
0-007

0-005
0-003
0-002
0-001
0-900

0-000

Table 2.

gn
0-2689
0-267
0-260
0-249
0-233

0-213
0-188
0-160
0-128
0-093

0-057
0-021
—0-015
—0-049
—0-079

—0-105
—0-126
—0-141
—0-150
—0-154

—0-152
—0-147
—0-138
—0-126
—0-113

—0-099
—0-085
—0-071
—0-059
—0-048

—0-038
—0-030
—0-023
—0-017
—0-013

—0-009
—0-007
—0-005
—0-003
—0-002

—0-002

12
0
0-050
0-099
0-148
0-194

0-238
0-279
0-314
0-343
0:365

0-380
0-386
0-386
0-378
0-363

0-343
0-318
0:290
0-261
0:230

0-200
0-170
0-143
0-118
0-096

0-077
0-061
0-047
0-036
0-027

0-020
0-015
0-010
0-007
0-005

0-003
0-002
0-001
0-001
0-000

0-000

gz
0-2484
0-248
0-246
0-239
0-228

0-212
0-189
0-161
0-129
0-:092

0-054
0-015
—0-022
—0-057
—0-088

—0-113
—0-133
—0-146
—0-152
—0:154

—0-149
—0-141
—0-130
—0-117
—0-103

—0-088
—0-075
—0:062
—0-050
—0-040

—0-031
—0-024
—0-018
—0-014
—0-010

—0-007
—0-005
—0-004
—0-002
—0-002

—0-001
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£1a
0
0-128
0-228
0:304
0-358

0:392
0-409
0-412
0-404
0-386

0-362
0-333
0-301
0-268
0-235

0-204
0-174
0-147
0-122
0-100

0-081
0:065
0-051
0-040
0-031

0-024
0-018
0-013
0-010
0-007

0-005
0-003
0-002
0-002
0-001

0-001
0-001
0-000
0-000
0-000

0:000

813 L1
0-7079 0
0-568 0-042
0-439 0-084
0-322 0-124
0-217 0-164
0-126 0-201
0-048 0-235

—0-016 0-265
—0-067 0-290
—0-107 0-309
—0-135 0-322
—0-153 0-328
—0-163 0-327
—0-165 0-321
—0-162 0-309
—0-154 0-292
—0-143 0-271
—0-130 0-247
—0-116 0-222
-0-102 0-196
—0-088 0-170
—0-074 0-145
—0-062 0-122
—0-051 0-101
—0-041 0-082
—0-033 0-066
—0-026 0-052
—0-020 0-040
—0-015 0-031
—0-011 0-023
—0-008 0-017
—0-006 0-012
—0-004 0-009
—0-003 0-006
—0-002 0-004
—0-002 0-003
—0-001 0-002
—0-001 0-001
—0-000 0-001
—0-000 0-000
~0-000 0-000

Table 2 (cont.).

g14
0-2093
0-209
0-207
0-202
0-193

0-179
0-161
0-137
0-110
0-080

0-047
0-014
—0-018
—0-048
—0:074

—0-096
—0-112
—0-124
—0-130
—0-130

—0-127
--0-120
—0-111
—0-100
—0-088

—0-075
—0-063
—0-052
—0-042
—0-034

—0-026
—0-020
—0-015
—0-011
—0-008

—0-006
—0-004
—0-003
—0-002
—0-002

—0-001

&5
0
0-019
0-038
0-055
0-071

0-085
0-097
0-107
0-114
0-119

0-122
0-122
0-119
0-115
0-109

0-102
0-093
0-084
0-075
0-065

0-056
0-048
0-040
0-033
0-027

0-021
0-017
0-013
0-010
0-008

0:006
0-004
0-003
0-002
0-002

0-001
0-001
0-000
0-000
0-000

0-000

g1
0:0956
0-094
0-090
0-084
0-076

0-066
0-055
0-043
0-030
0-018

0-005
—0-006
—0-017
—0-026
—0-034

—0-040
—0-044
—0046
—0-047
—0-046

—0-044
—0-041
—0-037
—0-033
—0-029

—0-025
—0-021
—0-017
—0-014
—0-011

—0-008
—0-006
—0-005
—0-004
—0-003

—0-002
—0-001
—0-001
—0-001
—0-000

—0-000
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it follows that
(_qqi) = 14ee [0'5 +(0-840x — 0-910)is +
w/s

M
+ 2 {07x-11 —(0-840X2—0-080X+0~198)z's}], 62)
for y = 1-4, again provided that s® and higher powers are negligible.

Case of high frequency

When the frequency parameter s is large, it is appropriate to expand
in inverse powers of s. If o = (&5)"V2 and B = (fw/Cv,)'?Y, it follows that
7 = of, and we may write, instead of (33),

b= U, (Q”)”z[; FaB)+E °°0 a"h,,(ﬂ)]. (63)

lw ne=

Then, )

5y = u = U Fep+E 3 wni()] (64)
and
— S = L) PP H) - aFGR+E 3 (aat+ 20w h(B) |- (63

Corresponding to (36) we write

TITy = x=(x= DG +E 2 ark,(B)- (66)
For small «,
F(af) = 2 F7(0)aB + O(a),
and G(aB) = G'(0af + O(at),
provided B8 is not too large. With the help of these approximations, we
obtain, by substituting in (20) and considering successive powers of «, the
following differential equations
B —hy = —x(1- M),
B~k = (x—1)(1 = M)G'(0)8 + MF"(0)(hy— Bh}),
B — by = MF"(0)(hy — Bh1),
hy — by = L F'(0)(3 85 — Bho) + ME"(0)(hy — Bh).
In the complementary function of each differential equation, the term
involving ¢ must be suppressed because it has the wrong behaviour for
large B, and therefore there are only two constants of integration. These
are determined by the boundary conditions £,(0) = A,(0) =0. The
appropriate solutions are
hy = (1—-M)x(B+eP-1),
hy = —3(x—-1)G'(0)8+ M[}(x —1)G'(0)8* +
+xF'(0){B+1eH(9+58+£%) -},
hy = —M(x—1)F'(0)G'(0)(B+3 B +eF—1),
hy = #5(1—M)xF"(0)[48%+eB(13 + 138+ 582 + §B°%) - 13).
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Similarly by substituting in (29) we obtain the differential equations
Pk —ky =0,
Pk —k, = — M{F"(0)Bky+ (x — 1)G’(0)hy],
Plky—ky = — M[F"(0)Bk, + (x — 1)G'(0)h,],
Pk — kg = } F'(0)8% + }(x — 1)G'(0)Bho — M[F"(0)Bk; + (x — 1)G'(0)hy].
The appropriate solutions, for moderate 8, are
ky= —M(y—1)xe BV7,
b= Mixx- DGO B+ TR 1]

by = M= DG O] 3 (77— 1= 6% |

b= xx= 16O [ -+ g "~ { T B+ ot |-

_M[J;X(X_1)(;'(0){_/3Jr .(T_Z—_PPT)_ze—ﬂ\/P _ (T?PPBJF
" (1—3%)5 } + f5ly = DxF'(0)(B+ P +%Pﬁa)e-ﬂ“‘°],

the term €8YF in the complementary functions having been discarded in
each case, and the solutions having been made to satisfy the boundary
conditions

k0) = —My—1)x,  k(0)=0 (n > 1).

It now follows that for large frequencies (o small)

_ HyPy (o \V2 (Ou
molh®) = (a:) (87? 6o

Cy 12 p ©
mU";( °°) —1[F”0 +E "“1h;:0],
P Tox) b (0) ngoa (0)

]

and so

(:"’) = 1+ E[3-011y(is)¥2 — 0-8903(x — 1) + 0-3125 x(is)~ +
wis
+ M — 3-011 x(is)2 + 1-140 + 0-5097 — 0-2956( — 1)(is) 12—

—0-3125x(s)1}], (67)

provided the cube and higher powers of s7V2 are neglected.
Similarly the heat transfer from the plate is

_ PP [ i \V2 (3] .
st = =52 ()" (5), .,

1 CU, v, \V2 , < y
= o= (T) B n 600 0-E 5 e ]

x n=1{
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o _ 1+E[0-394sx(is)—1 + ——{ 1-148x(is)¥2 — 0-5410x2 +
+2:34105— 1-8+ 0-3484(x — 1)2(is) 12 — (0-3945 % —
—0-4226x)(is)*1}] (68)

for P = 0-72, with the cube and higher powers of s~V% neglected.
If, in order to compare the formulae for small and large frequency, we
write

= 1+ €=M 4 +{B),

(T’!D)S
and
Quw _
. 1 + el(wf Ms) (‘1 +1D
@) (C+:D),
where 4, B, C and D are real, then
4=15+07M (small s)
= 2:1295sY2 — 0:-8903(y — 1) + M[— 2-129s12 +- 1-1403 x + (69)
+0-5097 — 0-2090(x — 1)s~1/2] (large s), |
= (3-661y — 1-105)s — M(3-661x — 0-272)s (small 5)
= 2-1295Y2 — 0-31255~1 + M[ — 2-129s%2 + (70)
+0-2090(x — 1)s~2 + 0-3125s71] (large s), J
C = 0-5+M9'7—X__—11-'-1- (small )
0-8117 D
=M [:—-——X—_—l—x §Y241-8 — 05410y + 0-2464(x — l)s*”z] (large s),
= (0-840y — 0-910)s — X_AZ_ (0-840x% — 0-080x +0-198)s  (small s)
= —03945ys 1+ M [m 12 0-2464(x — 1)s7V2 + + (72)
O 3945
); f 4225x ] (large s).

The angles tan~'(B/A) and tan"1(D/C) are the amounts by which the phases
of the skin friction and the heat transfer respectively are in advance of the
mainstream fluctuation.

In the important special case M = 0,

T

G, = L+ e [15+i(3:661x—1-105)] (small 5)

1

|
= 1+ ee[2:12954% — 0-8903(x — 1) + r (73)
+i(2:129542—0-312551)]  (large s). J

When further the flow is completely incompressible, X = 1, as we have
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already mentioned, and we then obtain
T .
—= = 1+ee™(1:5+2-556is small s ]
(s ( ) ¢ ) (74)
= 1+ee™2-1295sY2 + §(2:129sY2 — 0-3125s7Y)]  (large s). J|
(We may notice here that Moore (1951) gives 2-555 as the coefficient of is
in the formula for small s.) The formulae given by Lighthill for the skin
friction in this case are
T ) 1
—% = 1+ee(1-5+2is small 5) |
(Tw)s €e'( 3545) ( ) (75)
= 1+ec™2-062512 4 (2-062512)] (large s).
The good agreement between (74) and (75), and particularly the fact that
the coefficients of #s for low frequencies are practically equal, strongly
supports the use of the Pohlhausen approximate method by Lighthill in
this problem. Lighthill also showed that the whole range of values of the
frequency might reasonably well be covered by using (75) only. For at

40
3-0t
A B
2-0F
//
!
1o/
// 1 100
!
4
I
1
1
/ . N o°
o) 05 10 15 20 25 30

s
Figure 1. Variation of A, B, and tan~(B/A) with frequency parameter s when
M=0and y=1.

the place 5 = 5, where the values of tan~%(B/A4) are equal in the two parts
of (75), the values of (A% + B?%)12 agree, and so it is reasonable to assume
that the two parts of (75) apply to the respective ranges s < s, and
§ > sg. This point is illustrated in figure 1, where the quantities 4, B and
tan~Y(B/A) as given by (74), rather than (75), are plotted for various values
of s. For if the term involving s~ in (74) is discarded, so as to bring the
formula into line with (75), the B-curve for large s will coincide with the
given A-curve for large s. Then, 4 = B for both large and small s at
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s =55 = 0-59 and here the two A-curves are close together. Figure 2,
based on (73), shows the same information for y = 2 as figure 1 does for
x = 1. However, for x = 2, the whole range of values of s does not appear
to be as well represented as it was for y = 1 simply by the formulae for small
and large s. To make a strict comparison with the previous discussion,
we should retain only the terms involving s¥2 in the part of (73) referring
to large s. Then, the 4- and B-curves for large s would coincide with the
A-curve for large s in figure 1, and we should have 4 = B for both small
and large s at s = s, = 0-24. Here the values of 4 would be 1-5 for small s
and 1-043 for large s (from the A-curve on figure 1). This involves a much
larger discrepancy than the case x = 1, where the corresponding numbers
are 1-5 and 1-64 respectively. Infact, figure 2 suggests that the formulae (73)
will not be adequate to cover all values of the frequency for an arbitrary
value of y.

8-Or .80°

6:0r

tan™ B4

e - —— e e

40r 140
tar™ BA
2:0r {20°
. . M R " o°
0 05 1.0 15 2.0 2:5 3G

s

Figure 2. Variation of 4, B, and tan~'(B/A) with frequency parameter s when.
M=0 and y = 2.

The quantity tan~'(B/4) is of course the phase advance of the skin
friction relative to the main stream. As (69) and (70) show, this has the
asymptotic value tr for large frequencies whatever the values of x and M
(small). For any specified small value of s, on the other hand, the phase
advance is increased by increasing the value of y, that is, by increasing the
temperature of the plate and therefore reducing the inertia of the gas near
the surface.

As regards the heat transfer from the wall, it can be seen from (71) and (72)
that the phase advance for small frequency is small and negative in the
incompressible case (x = 1) as Lighthill found. In fact, for the case M = 0,
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x = 1, Lighthill’s work gives

—(qq—'”)— = 1+€e®(0-5—0-03¢s) for small s,

w/s

whereas the present calculations give the same formula with the coefficient
0-03 replaced by 0-070. (Ostrach’s (1955) value is 0-069 to the present order
of accuracy.) The Pohlhausen method has in fact predicted this coefficient
reasonably well, giving the correct sign and a small quantity of the correct
order of magnitude. As yisincreased, the phase advance increases (becoming
positive at y = 1-08), as it does for the skin friction. Since, for large values
of 5, C'and D are 0 in the case M = 0 provided that terms smaller than s¥2
are neglected, the heat transfer does not lend itself to a graphical
representation corresponding to figures 1 and 2.

APPENDIX

A note on transformations of the compressible boundary-layer equations for
unsteady flow

The analysis of §2 shows that the Howarth transformation as extended
by Moore provides a very useful method of treating the boundary-layer
equations for unsteady compressible flow. Now, in the theory of steady
boundary layers, besides the Howarth transformation there are the von Mises
and the Crocco transformations. All these transformations hinge upon the
replacement of the coordinate y perpendicular to the wall by a convenient

. . . 1 ¥ .
alternative variable. 'The Howarth transformation uses b f p dy instead
w /0

of y, as we have already seen; the von Mises transformation uses the
stream function, which exists in steady plane flow, and the Croccotransforma-
tion uses the velocity component u. These have all been described by
Howarth (1953). The Crocco transformation has been mainly employed
in studying the steady boundary layer on a flat plate, whilst the other two
transformations, besides their application to the flat plate, have both been
used to show that a compressible boundary layer with a non-zero pressure
gradient in certain circumstances may be given in terms of the solution of
an associated incompressible boundary-layer flow. It is therefore of some
interest to examine whether the von Mises and the Crocco transformations
can also be conveniently extended to the case of unsteady boundary-layer
flow.

The von Mises equations
In the von Mises transformation for unsteady flow, the new variables
are t, x and i, where ¢ is the mass flux function defined by the equation

pu _ 9
po Oy’
In terms of the new variables
_ ay\~ _ (*( % _ pwOp dy
pU = po (87«) and pv = J0<57517; ~ oudi dis+pu EP (76)
FoM. 21
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It is easy to show that the momentum equation (2) becomes

ou ou (v 1 du ou 10p, 1 u o ou

St L W AR Ealeg) O
in which the first two terms on the left-hand side may be replaced by

d v 1 du
‘ale a5 )

and that the energy equation (3) becomes
ol al v 1 ou of 1 [op, ap.\ I
Giteggaa e (% %)

1 a ol upt® [Ou\2

- meralewm) T (5) o

Of course these von Mises equations have little practical value if they are

in all circumstances more difficult to solve than the corresponding
equations (12) and (13) that result from the Howarth transformation. It
is scarcely possible to assert that they will be more difficult without a detailed
study of some special cases, but it will perhaps be worth while to notice
how unsteadiness of the flow increases the difficulties of solution in one
or two simple cases of steady flow that have been investigated by means
of the von Mises transformation. To take an easy example, consider steady
flow past a flat plate for which the momentum equation in the von Mises

form is

ou 1 0 ou

- s (eap) 7
This equation was solved by von Karmin & Tsien (1938) under the
assumptions that g = p, (7/T,)" with n = 0-76, P = 1, and that there is
no heat transfer at the plate. 'The last two conditions ensure that
I+3tu? =1+ LU, where the suffix oo refers to the uniform main stream,
and the first condition shows that pp = u, p(I/1,)"™", so that pp is a
function of u only, given by

Uz, u? \ 1!
wp = :u“oopmol:l'f' 27:(1“ 'U?)] . (80)

Thus, (79) reduces to a second order differential equation for the single
dependent variable . If the expression (80) is substituted in equation (12),
a third order equation for ¢ results, and so there is something to be said
for preferring the von Mises momentum equation in this problem.

In the field of unsteady flow a relatively simple problem of the same type
concerns a flat plate in a constant stream when the temperature of the plate
is a function of time. Then there are no pressure gradients and the
von Mises momentum equation reduces to

0 v 1 ou Ju 1 9 ou
(47 %) 5 = oy (o) Y
Even if we assume that P = 1, it is no longer possible to write
I—H;uz =1I,+IU%
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now that there is heat transfer at the plate, and so up cannot be expressed
in terms of # only, as in equation (80).

However, if, instead of assuming that u oc 7, we adopt the approxi-
mation referred to in §2 and write

pp = Chics poo

where C, given by (17), is a known function of ¢ only, equation (81) is a
differential equation involving only the one dependent variable u. Thus,
by altering the assumed viscosity temperature law, we have kept to a problem
of the Karman-Tsien type, namely, the solution of a second-order partial
differential equation for u, as far as the momentum equation is concerned.
Of course it still remains to solve the energy equation (78), for information
about the temperature (and density) in the boundary layer.

Actually, if we use the rather formal viscosity—temperature law u oc 7,
so that up = u, pe, this problem can be simplified still further. For the
velocity u then loses its explicit dependence on ¢, and the momentum

equation is
ou 0 8u>
a—x = Vg gp u@ .

Thus u(x,4) is simply the velocity (expressed in von Mises coordinates)
for steady incompressible flow past a flat plate. The temperature would
then be given by solving the energy equation

ol ol v, 9(  (3u\?
§+u8_x—?u8¢ ualp +vou E,Z .

The Crocco equations
In the Crocco transformation the new variables are ¢, x and g, where 2
is the non-dimensional velocity distribution function given by
2 = ul(t, x, v)/u (2, x). (82)

When u, is a constant this is precisely the transformation that Crocco used
to investigate the steady boundary layer on a flat plate. Following Crocco,
we eliminate pv between the transformed equations of continuity and
momentum, and introduce the shearing stress

ou A
T= ,“5}’) = piy 8;)

as a dependent variable in place of u. In this way, (1) and (2) lead to the
equation

ouy 9 (pp 0 (up duy , 0 (pp\ . 0 [up
5?%7(7)“”137 7)*”%*" a\7 ) 7)

16p, 0 1 1 02
_ PJ__(.“P__) o*r (83)

py ox da\ 7 I, u; 022’

Similarly, by transforming (2) and (3) and eliminating pv between them
212
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we obtain
ol du, ol ou, ,ol ~, al

mpe ulg——ﬁ zé—z—ulﬁz 8—z+u1259—c —
Tfuyop,  19p3l  ,13p _ 1 6rdl
PPTN\o ot " p oo Mo ox )T w T3 B

1 af oI .

= P—u;75<75§>+u172. (84)
The boundary conditions that go with these equations concern the
values of 7 and 7 at the wall, 2 = 0, and at the outer edge of the boundary
layer 2 = 1. Equation (2) shows that dr/dy = dp,/0x at the wall, and so

or P
Tz = Hwlh 5 atz = 0. (85)

Since the shearing stress vanishes at the outer edge of the boundary layer
7=0 at z=1. (86)

We shall suppose that either the wall temperature (enthalpy 7, or the heat
flux, g,, from the wall is specified. It follows that I must satisfy either

I=1, or (r3l/oz) = —Pu,q, at z=0. (87)
Finally, the condition ‘
I=1 atz=1 (88)
completes the list of four boundary conditions.

Equations (83) and (84) are quite complicated, especially because of
the large number of terms on the left-hand side in each case. In this respect
they are much worse than either the Howarth-Moore equations (12) and (13)
or the von Mises equations (77) and (78). However, it would be feasible
to use them in some circumstances. Some preliminary work showed that
it would have been practicable to obtain the results of §3 by solving these
equations, but the simpler calculations involved in starting from the
Howarth-Moore equations turned out to be preferable. One advantage
of the Crocco equations is that the momentum equation is of the second
order, but one of the complications encountered in the work just mentioned
arose from the frequently occurring term pp/7r. It will be recalled that in
§3, = was expressed as a power series, and the reciprocal of such a series,
arising in pp/7, is another series with complicated coeflicients. Of course
these difficulties would also be present if the Crocco equations were applied
to a steady boundary layer with a non-uniform main stream. So far as the
author is aware, even this has not been done.

The Crocco equations are considerably shortened by assuming that the
external stream is uniform. In fact for the simple problem, mentioned
above, of a flat plate with a varying temperature and with pp = u, p.,
they would reduce to

0% d /1
S Hhapa US s o () -0, (89)

1 o/ oI s 1 o1 ol or ol 2 o _
p*éz<75§>+“waUw(cTw§: ”a;)“a—za}“fw’ =0 (0
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The solution of (89) for 7 is known from the work of Crocco for the case
of steady flow, and the problem therefore reduces to solving (90) for I.

In conclusion, the small amount of evidence from the problem considered
in this paper suggests that the Howarth~Moore transformation is the simplest
to apply of the three available transformations in unsteady compressible
boundary-layer theory.
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